Solutions

1. Clearly both one - one and onto

Because if n is odd, values are set of all non-negative integers and if n is an even, values are set of all negative integers.
Hence, (C) is the correct answer.
2. $z_{1}{ }^{2}+z_{2}{ }^{2}-z_{1} z_{2}=0$
$\left(z_{1}+z_{2}\right)^{2}-3 z_{1} z_{2}=0$
$a^{2}=3 \mathrm{~b}$.
Hence, (C) is the correct answer.
5. $\quad\left|\begin{array}{lll}a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1\end{array}\right|+\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=0$
$(1+a b c)\left|\begin{array}{lll}a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1\end{array}\right|=0$
$\Rightarrow a b c=-1$.
Hence, (B) is the correct answer
4. $\frac{1+\mathrm{i}}{1-\mathrm{i}}=\frac{(1+\mathrm{i})^{2}}{2}=\mathrm{i}$
$\left(\frac{1+i}{1-i}\right)^{x}=i^{x}$
$\Rightarrow x=4 n$.
Hence, (A) is the correct answer.
6. Coefficient determinant $=\left|\begin{array}{lll}1 & 2 a & a \\ 1 & 3 b & b \\ 1 & 4 c & c\end{array}\right|=0$
$\Rightarrow \mathrm{b}=\frac{2 \mathrm{ac}}{\mathrm{a}+\mathrm{c}}$.
Hence, (C) is the correct answer
8. $\quad x^{2}-3|x|+2=0$
$(|x|-1)(|x|-2)=0$
$\Rightarrow x= \pm 1, \pm 2$.
Hence, (B) is the correct answer
7. Let α, β be the roots
$\alpha+\beta=\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$
$\alpha+\beta=\frac{\alpha^{2}+\beta^{2}-2 \alpha \beta}{(\alpha+\beta)}$
$\left(-\frac{b}{a}\right)=\frac{b^{2}-2 a c}{c^{2}}$
$\Rightarrow 2 \mathrm{a}^{2} \mathrm{c}=\mathrm{b}\left(\mathrm{a}^{2}+\mathrm{bc}\right)$
$\Rightarrow \frac{a}{c}, \frac{b}{a}, \frac{c}{b}$ are in H.P.
Hence, (C) is the correct answer
10. $A=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$
$A^{2}=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$
$=\left[\begin{array}{cc}a^{2}+b^{2} & 2 a b \\ 2 a b & a^{2}+b^{2}\end{array}\right]$
$\Rightarrow \alpha=a^{2}+b^{2}, \beta=2 a b$.
Hence, (B) is the correct answer.
9. $\beta=2 \alpha$
$3 \alpha=\frac{3 a-1}{a^{2}-5 a+3}$
$2 \alpha^{2}=\frac{2}{a^{2}-5 a+6}$
$\frac{(3 a-1)^{2}}{a\left(a^{2}-5 a+3\right)^{2}}=\frac{1}{a^{2}+5 a+6}$
$\Rightarrow \mathrm{a}=\frac{2}{3}$.
Hence, (A) is the correct answer
12. Clearly $5!\times 6$!
(A) is the correct answer
11. Number of choices $={ }^{5} \mathrm{C}_{4} \times{ }^{8} \mathrm{C}_{6}+{ }^{5} \mathrm{C}_{5} \times{ }^{8} \mathrm{C}_{5}$
$=140+56$.
Hence, (B) is the correct answer
13. $\Delta=\left|\begin{array}{ccc}1+\omega^{n}+\omega^{2 n} & \omega^{n} & \omega^{2 n} \\ 1+\omega^{n}+\omega^{2 n} & \omega^{2 n} & 1 \\ 1+\omega^{n}+\omega^{2 n} & 1 & \omega^{n}\end{array}\right|$
$=0$
Since, $1+\omega^{n}+\omega^{2 n}=0$, if n is not a multiple of 3
Therefore, the roots are identical.
Hence, (A) is the correct answer
14. ${ }^{n} C_{r+1}+{ }^{n} C_{r-1}+{ }^{n} C_{r}+{ }^{n} C_{r}$
$={ }^{n+1} C_{r+1}+{ }^{n+1} C_{r}$
$={ }^{n+2} C_{r+1}$.
Hence, (B) is the correct answer
17. $\frac{1}{1 \cdot 2}-\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}-\ldots \ldots .$.
$=1-\frac{1}{2}-\frac{1}{2}+\frac{1}{3}+\frac{1}{3}-\frac{1}{4}-\ldots \ldots \ldots$
$=1-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\ldots \ldots \ldots ..\right)$
$=2\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots \ldots \ldots.\right)-1$
$=2 \log 2-\log e$
$=\log \left(\frac{4}{e}\right)$.
Hence, (D) is the correct answer.
15. General term $={ }^{256} \mathrm{C}_{\mathrm{r}}(\sqrt{3})^{256-r}\left[(5)^{1 / 8}\right]^{r}$

From integral terms, or should be 8 k
$\Rightarrow \mathrm{k}=0$ to 32 .
Hence, (B) is the correct answer.
18. $f(x)=a x^{2}+b x+c$
$f(1)=a+b+c$
$f(-1)=a-b+c$
$\Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{a}-\mathrm{b}+\mathrm{c}$ also $2 \mathrm{~b}=\mathrm{a}+\mathrm{c}$
$\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{ax}+\mathrm{b}=2 \mathrm{ax}$
$f^{\prime}(a)=2 a^{2}$
$f^{\prime}(b)=2 a b$
$f^{\prime}(c)=2 a c$
$\Rightarrow \mathrm{AP}$.
Hence, (A) is the correct answer.
19. Result (A) is correct answer.
20. (B)
21. $a\left(\frac{1+\cos C}{2}\right)+c\left(\frac{1+\cos A}{2}\right)=\frac{3 b}{2}$
$\Rightarrow a+c+b=3 b$
$a+c=2 b$.
Hence, (A) is the correct answer
26. $f(1)=7$
$\mathrm{f}(1+1)=\mathrm{f}(1)+\mathrm{f}(1)$
$\mathrm{f}(2)=2 \times 7$
only $f(3)=3 \times 7$
$\sum_{r=1}^{n} f(r)=7(1+2+\ldots \ldots \ldots+n)$
$=7 \frac{\mathrm{n}(\mathrm{n}+1)}{2}$.
25. (B)
23. $-\frac{\pi}{4} \leq \frac{\sin ^{2} x}{2} \leq \frac{\pi}{4}$
$-\frac{\pi}{4} \leq \sin ^{-1}(a) \leq \frac{\pi}{4}$
$\frac{1}{2} \leq|a| \leq \frac{1}{\sqrt{2}}$.
Hence, (D) is the correct answer
27. $\mathrm{LHS}=1-\frac{\mathrm{n}}{1!}+\frac{\mathrm{n}(\mathrm{n}-1)}{2!}-\frac{\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)}{3!}+$ \qquad
$=1-{ }^{n} C_{1}+{ }^{n} C_{2}-\ldots \ldots \ldots$.
$=0$.
Hence, (C) is the correct answer
30. $\lim _{x \rightarrow 0} \frac{\frac{1}{3+x}+\frac{1}{3-x}}{1}=\frac{2}{3}$.

Hence, (C) is the correct answer.
28. $4-x^{2} \neq 0$
$\Rightarrow x \neq \pm 2$
$x^{3}-x>0$
$\Rightarrow x(x+1)(x-1)>0$.
Hence (D) is the correct answer.
29. $\lim _{x \rightarrow \pi / 2} \frac{\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)(1-\sin x)}{4\left(\frac{\pi}{4}-\frac{x}{2}\right)(\pi-2 x)^{2}}$
$=\frac{1}{32}$.
Hence, (C) is the correct answer.
32. $f(-x)=-f(x)$

Hence, (B) is the correct answer.

1. $\sin (\theta+\alpha)=\frac{x}{40}$
$\sin \mathrm{a}=\frac{\mathrm{x}}{140}$
$\Rightarrow \mathrm{x}=40$.
Hence, (B) is the correct answer

2. $f(x)=0$ at $x=p, q$
$6 p^{2}+18 a p+12 a^{2}=0$
$6 q^{2}+18 a q+12 a^{2}=0$
$\mathrm{f}^{\prime \prime}(\mathrm{x})<0$ at $\mathrm{x}=\mathrm{p}$
and $\mathrm{f}^{\prime \prime}(\mathrm{x})>0$ at $\mathrm{x}=\mathrm{q}$.
3. Applying L. Hospital's Rule
$\lim _{x \rightarrow 2 a} \frac{f(a) g^{\prime}(a)-g(a) f^{\prime}(a)}{g^{\prime}(a)-f^{\prime}(a)}=4$
$\frac{k\left(g^{\prime}(a)-f^{\prime}(a)\right)}{\left(g^{\prime}(a)-f^{\prime}(a)\right)}=4$
$\mathrm{k}=4$.
Hence, (A) is the correct answer.
4. $\int_{a}^{b} x f(x) d x$
$=\int_{a}^{b}(a+b-x) f(a+b-x) d x$.
Hence, (B) is the correct answer.
5. $f^{\prime}(0)$
$\mathrm{f}^{\prime}(0-\mathrm{h})=1$
$\mathrm{f}^{\prime}(0+\mathrm{h})=0$
$L H D=R H D$.
Hence, (B) is the correct answer.
6. $\lim _{x \rightarrow 0} \frac{\tan \left(x^{2}\right)}{x \sin x}$
$=\lim _{x \rightarrow 0} \frac{\tan \left(x^{2}\right)}{x^{2}\left(\frac{\sin x}{x}\right)}$
$=1$.
Hence (C) is the correct answer.
7. $\int_{0}^{1} x(1-x)^{n} d x=\int_{0}^{1} x^{n}(1-x)$
$=\int_{0}^{1}\left(x^{n}-x^{n+1}\right)=\frac{1}{n+1}-\frac{1}{n+2}$.
Hence, (C) is the correct answer.
8. $F(t)=\int_{0}^{t} f(t-y) f(y) d y$
$=\int_{0}^{t} f(y) f(t-y) d y$
$=\int_{0}^{t} e^{y}(t-y) d y$
$=\mathrm{x}^{\mathrm{t}}-(1+\mathrm{t})$.
Hence, (B) is the correct answer.
9. Clearly $\mathrm{f}^{\prime \prime}(\mathrm{x})>0$ for $\mathrm{x}=2 \mathrm{a} \Rightarrow \mathrm{q}=2 \mathrm{a}<0$ for $\mathrm{x}=\mathrm{a} \Rightarrow \mathrm{p}=\mathrm{a}$ or $p^{2}=q \Rightarrow a=2$.
Hence, (C) is the correct answer.
10. $\quad F^{\prime}(x)=\frac{e^{\sin x}}{3^{x}}$
$=\int \frac{3}{x} e^{\sin x} d x=F(k)-F(1)$
$=\int_{1}^{64} \frac{e^{\sin x}}{x} d x=F(k)-F(1)$
$=\int_{1}^{64} F^{\prime}(x) d x=F(k)-F(1)$
$F(64)-F(1)=F(k)-F(1)$
$\Rightarrow k=64$.
Hence, (D) is the correct answer.
11. Clearly area $=2 \sqrt{2} \times \sqrt{2}$
= sq units

12. Let $\mathrm{p}(\mathrm{x}, \mathrm{y})$
$\left(x-a_{1}\right)^{2}+\left(y-b_{1}\right)^{2}=\left(x-a_{2}\right)^{2}+\left(y-b_{2}\right)^{2}$
$\left(a_{1}-a_{2}\right) x+\left(b_{1}-b_{2}\right) y+\frac{1}{2}\left(b_{2}^{2}-b_{1}^{2}+a_{2}^{2}-a_{1}^{2}\right)=0$.
Hence, (A) is the correct answer.
13. $x=\frac{a \cos t+b \sin t+1}{3}, y=\frac{a \sin t-b \cos t+1}{3}$
$\left(x-\frac{1}{3}\right)^{2}+y^{2}=\frac{a^{2}+b^{2}}{9}$.
Hence, (B) is the correct answer.
14. Equation $\left.\mathrm{y}^{2}=4 \mathrm{a} 9 \mathrm{x}-\mathrm{h}\right)$
$2 \mathrm{yy}_{1}=4 \mathrm{a} \Rightarrow \mathrm{yy}_{1}=2 \mathrm{a}$
$y_{2}=y_{1}{ }^{2}=0$.
Hence (B) is the correct answer.
15. $\int_{0}^{1} f(x)\left[x^{2}-f(x)\right] d x$
solving this by putting $f^{\prime}(x)=f(x)$.
Hence, (B) is the correct answer.
16. Intersection of diameter is the point (1, -1)
$\pi \mathrm{s}^{2}=154$
$\Rightarrow \mathrm{s}^{2}=49$
$(x-1)^{2}+(y+1)^{2}=49$
Hence, (C) is the correct answer.
17. (D)
18. $\frac{d x}{d y}\left(1+y^{2}\right)=\left(e^{\sin ^{-1} y}-x\right)$
$\frac{d x}{d y}+\frac{x}{1+y^{\alpha}}=\frac{e^{\text {sub }-1-y}}{1+y^{2}}$
19. $\frac{x^{2}}{\left(\frac{12}{5}\right)^{2}}-\frac{y^{2}}{\left(\frac{9}{5}\right)^{2}}=1$
$\Rightarrow \mathrm{e}_{1}=\frac{5}{4}$
$\mathrm{ae}_{2}=\sqrt{1-\frac{b^{2}}{16}} \times 4=3$
$\Rightarrow b^{2}=7$.
Hence, (C) is the correct answer.
20. (C)

21. $n p=4$
$n p q=2$
$\mathrm{q}=\frac{1}{2}, \mathrm{p}=\frac{1}{2}$
$\mathrm{n}=8$
$p(x=1)={ }^{8} C_{1}\left(\frac{1}{2}\right)^{8}$
$=\frac{1}{32}$.
Hence, (A) is the correct answer.
22. $(x-1)^{2}+(y-3)^{2}=r^{2}$
$(x-4)^{2}+(y+2)^{2}-16-4+8=0$
$(x-4)^{2}+(y+2)^{2}=12$.
23. Select 2 out of 5
$=\frac{2}{5}$.
Hence, (D) is the correct answer.
24. $0 \leq \frac{3 x+1}{3}+\frac{1-x}{4}+\frac{1-2 x}{2} \leq 1$
$12 x+4+3-3 x+6-12 x \leq 1$
$0 \leq 13-3 x \leq 12$
$3 x \leq 13$
$\Rightarrow \mathrm{x} \geq \frac{1}{3}$
$x \leq \frac{13}{3}$.
Hence, (C) is the correct answer.
25. $\quad \operatorname{Arg}\left(\frac{z}{\omega}\right)=\frac{\pi}{2}$
$|z \omega|=1$
$\bar{z} \omega=-i o r+i$.
