Solutions

- Clearly both one one and onto Because if n is odd, values are set of all non–negative integers and if n is an even, values are set of all negative integers. Hence, (C) is the correct answer.
- 2. $z_1^2 + z_2^2 z_1 z_2 = 0$ $(z_1 + z_2)^2 - 3z_1 z_2 = 0$ $a^2 = 3b$. Hence, (C) is the correct answer.
- 5. $\begin{vmatrix} a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1 \end{vmatrix} + \begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} = 0$ $(1 + abc) \begin{vmatrix} a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1 \end{vmatrix} = 0$ $\Rightarrow abc = -1.$

Hence, (B) is the correct answer

4.
$$\frac{1+i}{1-i} = \frac{(1+i)^2}{2} = i$$
$$\left(\frac{1+i}{1-i}\right)^x = i^x$$
$$\Rightarrow x = 4n.$$

Hence, (A) is the correct answer.

6. Coefficient determinant = $\begin{vmatrix} 1 & 2a & a \\ 1 & 3b & b \\ 1 & 4c & c \end{vmatrix}$ = 0

 $\Rightarrow b = \frac{2ac}{a+c}.$ Hence, (C) is the correct answer

- 8. $x^2 3 |x| + 2 = 0$ (|x| - 1) (|x| - 2) = 0 $\Rightarrow x = \pm 1, \pm 2$. Hence, (B) is the correct answer
- 7. Let α , β be the roots $\alpha + \beta = \frac{1}{\alpha^2} + \frac{1}{\beta^2}$ $\alpha + \beta = \frac{\alpha^2 + \beta^2 - 2\alpha\beta}{(\alpha + \beta)}$ $\left(-\frac{b}{a}\right) = \frac{b^2 - 2ac}{c^2}$ $\Rightarrow 2a^2c = b (a^2 + bc)$

 $\Rightarrow \frac{a}{c}, \frac{b}{a}, \frac{c}{b} \text{ are in H.P.}$ Hence, (C) is the correct answer

10.
$$A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$
$$A^{2} = \begin{bmatrix} a & b \\ b & a \end{bmatrix} \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$
$$= \begin{bmatrix} a^{2} + b^{2} & 2ab \\ 2ab & a^{2} + b^{2} \end{bmatrix}$$
$$\Rightarrow \alpha = a^{2} + b^{2}, \beta = 2ab.$$
Hence, (B) is the correct answer

$$\beta = 2\alpha$$

$$3\alpha = \frac{3a-1}{a^2-5a+3}$$

$$2\alpha^2 = \frac{2}{a^2-5a+6}$$

$$\frac{(3a-1)^2}{a(a^2-5a+3)^2} = \frac{1}{a^2+5a+6}$$

$$\Rightarrow a = \frac{2}{3}.$$
Hence, (A) is the correct answer

12. Clearly $5! \times 6!$ (A) is the correct answer

11. Number of choices = ${}^{5}C_{4} \times {}^{8}C_{6} + {}^{5}C_{5} \times {}^{8}C_{5}$ = 140 + 56. Hence, (B) is the correct answer

13.
$$\Delta = \begin{vmatrix} 1 + \omega^{n} + \omega^{2n} & \omega^{n} & \omega^{2n} \\ 1 + \omega^{n} + \omega^{2n} & \omega^{2n} & 1 \\ 1 + \omega^{n} + \omega^{2n} & 1 & \omega^{n} \end{vmatrix}$$

= 0

9.

Since, $1 + \omega^n + \omega^{2n} = 0$, if n is not a multiple of 3 Therefore, the roots are identical. Hence, (A) is the correct answer

17.
$$\frac{1}{1\cdot 2} - \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} - \dots$$

= $1 - \frac{1}{2} - \frac{1}{2} + \frac{1}{3} + \frac{1}{3} - \frac{1}{4} - \dots$

$$= 1 - 2\left(\frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \dots\right)$$
$$= 2\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots\right) - 1$$
$$= 2 \log 2 - \log e$$
$$= \log\left(\frac{4}{e}\right).$$

Hence, (D) is the correct answer.

- 15. General term = ${}^{256}C_r (\sqrt{3})^{256-r} [(5)^{1/8}]^r$ From integral terms, or should be 8k \Rightarrow k = 0 to 32. Hence, (B) is the correct answer.
- 18. $f(x) = ax^{2} + bx + c$ f(1) = a + b + c f(-1) = a b + c $\Rightarrow a + b + c = a b + c \text{ also } 2b = a + c$ f'(x) = 2ax + b = 2ax $f'(a) = 2a^{2}$ f'(b) = 2ab f'(c) = 2ac $\Rightarrow AP.$ Hence, (A) is the correct answer.
- 19. Result (A) is correct answer.
- 20. (B)

21.
$$a\left(\frac{1+\cos C}{2}\right)+c\left(\frac{1+\cos A}{2}\right)=\frac{3b}{2}$$
$$\Rightarrow a+c+b=3b$$
$$a+c=2b.$$
Hence, (A) is the correct answer

26.
$$f(1) = 7$$

 $f(1 + 1) = f(1) + f(1)$
 $f(2) = 2 \times 7$
only $f(3) = 3 \times 7$
 $\sum_{r=1}^{n} f(r) = 7 (1 + 2 + \dots + n)$
 $= 7 \frac{n(n+1)}{2}$.

23.
$$-\frac{\pi}{4} \le \frac{\sin^2 x}{2} \le \frac{\pi}{4}$$

 $-\frac{\pi}{4} \le \sin^{-1}(a) \le \frac{\pi}{4}$

$$\frac{1}{2} \le |a| \le \frac{1}{\sqrt{2}}.$$

Hence, (D) is the correct answer

27. LHS = $1 - \frac{n}{1!} + \frac{n(n-1)}{2!} - \frac{n(n-1)(n-2)}{3!} + \dots$ = $1 - {}^{n}C_{1} + {}^{n}C_{2} - \dots$ = 0. Hence, (C) is the correct answer

30.
$$\lim_{x\to 0} \frac{\frac{1}{3+x} + \frac{1}{3-x}}{1} = \frac{2}{3}.$$

Hence, (C) is the correct answer.

28. $\begin{array}{ll} 4-x^2\neq 0\\ \Rightarrow x\neq\pm 2\\ x^3-x>0\\ \Rightarrow x\ (x+1)\ (x-1)>0.\\ \text{Hence (D) is the correct answer.} \end{array}$

29.

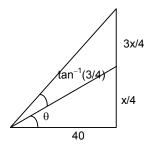
$$\lim_{x \to \pi/2} \frac{\tan\left(\frac{\pi}{4} - \frac{x}{2}\right)(1 - \sin x)}{4\left(\frac{\pi}{4} - \frac{x}{2}\right)(\pi - 2x)^2}$$

 $-\frac{1}{32}$. Hence, (C) is the correct answer.

32. f(-x) = -f(x)Hence, (B) is the correct answer.

1.
$$\sin (\theta + \alpha) = \frac{x}{40}$$

 $\sin a = \frac{x}{140}$
 $\Rightarrow x = 40.$
Hence, (B) is the correct answer



- 34. f(x) = 0 at x = p, q $6p^2 + 18ap + 12a^2 = 0$ $6q^2 + 18aq + 12a^2 = 0$ f''(x) < 0 at x = pand f''(x) > 0 at x = q.
- 30. Applying L. Hospital's Rule $\lim_{x \to 2a} \frac{f(a)g'(a) - g(a)f'(a)}{g'(a) - f'(a)} = 4$

 $\frac{k(g'(a) - ff'(a))}{(g'(a) - f'(a))} = 4$ k = 4. Hence, (A) is the correct answer.

36.
$$\int_{a}^{b} x f(x) dx$$
$$= \int_{a}^{b} (a+b-x) f(a+b-x) dx.$$
Hence, (B) is the correct answer.

33. f'(0) f'(0 - h) = 1 f'(0 + h) = 0LHD \neq RHD. Hence, (B) is the correct answer.

37.
$$\lim_{x \to 0} \frac{\tan(x^2)}{x \sin x}$$
$$= \lim_{x \to 0} \frac{\tan(x^2)}{x^2 \left(\frac{\sin x}{x}\right)}$$
$$= 1.$$

Hence (C) is the correct answer.

38.
$$\int_{0}^{1} x (1-x)^{n} dx = \int_{0}^{1} x^{n} (1-x)$$
$$= \int_{0}^{1} (x^{n} - x^{n+1}) = \frac{1}{n+1} - \frac{1}{n+2}.$$

Hence, (C) is the correct answer.

35.
$$F(t) = \int_{0}^{t} f(t - y) f(y) dy$$
$$= \int_{0}^{t} f(y) f(t - y) dy$$
$$= \int_{0}^{t} e^{y} (t - y) dy$$
$$= x^{t} - (1 + t).$$
Hence, (B) is the correct answer.

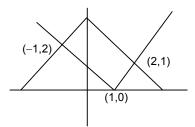
 $\begin{array}{ll} \mbox{34.} & \mbox{Clearly f''}(x) > 0 \mbox{ for } x = 2a \Rightarrow q = 2a < 0 \mbox{ for } x = a \Rightarrow p = a \\ & \mbox{ or } p^2 = q \Rightarrow a = 2. \\ & \mbox{ Hence, (C) is the correct answer.} \end{array}$

40.
$$F'(x) = \frac{e^{\sin x}}{3^x}$$

$$= \int \frac{3}{x} e^{\sin x} dx = F(k) - F(1)$$

= $\int_{1}^{64} \frac{e^{\sin x}}{x} dx = F(k) - F(1)$
= $\int_{1}^{64} F'(x) dx = F(k) - F(1)$
F (64) - F(1) = F(k) - F(1)
 $\Rightarrow k = 64.$
Hence, (D) is the correct answer.

41. Clearly area = $2\sqrt{2} \times \sqrt{2}$ = sq units



45. Let p (x, y)

$$(x - a_1)^2 + (y - b_1)^2 = (x - a_2)^2 + (y - b_2)^2$$

 $(a_1 - a_2) x + (b_1 - b_2) y + \frac{1}{2} (b_2^2 - b_1^2 + a_2^2 - a_1^2) = 0.$
Hence, (A) is the correct answer.

46.
$$x = \frac{a\cos t + b\sin t + 1}{3}, y = \frac{a\sin t - b\cos t + 1}{3}$$

 $\left(x - \frac{1}{3}\right)^2 + y^2 = \frac{a^2 + b^2}{9}.$

Hence, (B) is the correct answer.

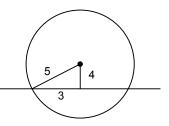
- 43. Equation $y^2 = 4a \ 9x h$) $2yy_1 = 4a \Rightarrow yy_1 = 2a$ $yy_2 = y_1^2 = 0$. Hence (B) is the correct answer.
- 42. $\int_{0}^{1} f(x) [x^{2} f(x)] dx$
solving this by putting f' (x) = f (x).
Hence, (B) is the correct answer.
- 50. Intersection of diameter is the point (1, -1) $\pi s^2 = 154$ $\Rightarrow s^2 = 49$ $(x - 1)^2 + (y + 1)^2 = 49$ Hence, (C) is the correct answer. 47. (D)
- 49. $\frac{dx}{dy} (1 + y^2) = (e^{\sin^{-1}y} x)$

$$\frac{dx}{dy} + \frac{x}{1+y^{\alpha}} = \frac{e^{sub^{-1}-y}}{1+y^{2}}$$
52.
$$\frac{x^{2}}{\left(\frac{12}{5}\right)^{2}} - \frac{y^{2}}{\left(\frac{9}{5}\right)^{2}} = 1$$

$$\Rightarrow e_{1} = \frac{5}{4}$$

$$ae_{2} = \sqrt{1 - \frac{b^{2}}{16}} \times 4 = 3$$

$$\Rightarrow b^{2} = 7.$$
Hence, (C) is the correct answer.



69. np = 4
npq = 2
q =
$$\frac{1}{2}$$
, p = $\frac{1}{2}$
n = 8
p (x = 1) = ${}^{8}C_{1} \left(\frac{1}{2}\right)^{8}$
= $\frac{1}{32}$.
Hence, (A) is the correct answer.

- 49. $(x-1)^2 + (y-3)^2 = r^2$ $(x-4)^2 + (y+2)^2 - 16 - 4 + 8 = 0$ $(x-4)^2 + (y+2)^2 = 12.$
- 67. Select 2 out of 5 = $\frac{2}{5}$. Hence, (D) is the correct answer.

$$\begin{array}{ll} 65. \qquad 0 \leq \frac{3x+1}{3} + \frac{1-x}{4} + \frac{1-2x}{2} \leq 1 \\ & 12x+4+3-3x+6-12x \leq 1 \\ & 0 \leq 13-3x \leq 12 \\ & 3x \leq 13 \\ & \Rightarrow x \geq \frac{1}{3} \\ & x \leq \frac{13}{3} \\ & \text{Hence, (C) is the correct answer.} \end{array}$$

3. Arg
$$\left(\frac{z}{\omega}\right) = \frac{\pi}{2}$$

 $|z\omega| = 1$
 $\overline{z}\omega = -i \text{ or } + i.$

